翻訳と辞書
Words near each other
・ Schuppanzigh Quartet
・ Schuppen
・ Schur
・ Schur algebra
・ Schur algorithm
・ Schur class
・ Schur complement
・ Schur complement method
・ Schur decomposition
・ Schur function
・ Schur functor
・ Schur multiplier
・ Schur orthogonality relations
・ Schur polynomial
・ Schur product theorem
Schur test
・ Schur's inequality
・ Schur's lemma
・ Schur's lemma (disambiguation)
・ Schur's lemma (from Riemannian geometry)
・ Schur's property
・ Schur's theorem
・ Schur-convex function
・ Schurman
・ Schurman Commission
・ Schurmann Family
・ Schurmsee
・ Schurr
・ Schurr High School
・ Schurre


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schur test : ウィキペディア英語版
Schur test
In mathematical analysis, the Schur test, named after German mathematician Issai Schur, is a bound on the L^2\to L^2 operator norm of an integral operator in terms of its Schwartz kernel (see Schwartz kernel theorem).
Here is one version.〔Paul Richard Halmos and Viakalathur Shankar Sunder, ''Bounded integral operators on L^ spaces'', Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96., Springer-Verlag, Berlin, 1978. Theorem 5.2.〕 Let X,\,Y be two measurable spaces (such as \mathbb^n). Let \,T be an integral operator with the non-negative Schwartz kernel \,K(x,y), x\in X, y\in Y:
:T f(x)=\int_Y K(x,y)f(y)\,dy.
If there exist functions \,p(x)>0 and \,q(x)>0 and numbers \,\alpha,\beta>0 such that
: (1)\qquad \int_Y K(x,y)q(y)\,dy\le\alpha p(x)
for almost all \,x and
: (2)\qquad \int_X p(x)K(x,y)\,dx\le\beta q(y)
for almost all \,y, then \,T extends to a continuous operator T:L^2\to L^2 with the operator norm
: \Vert T\Vert_ \le\sqrt.
Such functions \,p(x), \,q(x) are called the Schur test functions.
In the original version, \,T is a matrix and \,\alpha=\beta=1.〔I. Schur, ''Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen'', J. reine angew. Math. 140 (1911), 1–28.〕
==Common usage and Young's inequality==

A common usage of the Schur test is to take \,p(x)=q(x)=1. Then we get:
:
\Vert T\Vert^2_\le
\sup_\int_Y|K(x,y)| \, dy
\cdot
\sup_\int_X|K(x,y)| \, dx.

This inequality is valid no matter whether the Schwartz kernel \,K(x,y) is non-negative or not.
A similar statement about L^p\to L^q operator norms is known as Young's inequality:〔Theorem 0.3.1 in: C. D. Sogge, ''Fourier integral operators in classical analysis'', Cambridge University Press, 1993. ISBN 0-521-43464-5〕
if
:\sup_x\Big(\int_Y|K(x,y)|^r\,dy\Big)^ + \sup_y\Big(\int_X|K(x,y)|^r\,dx\Big)^\le C,
where r\, satisfies \frac 1 r=1-\Big(\frac 1 p-\frac 1 q\Big), for some 1\le p\le q\le\infty, then the operator Tf(x)=\int_Y K(x,y)f(y)\,dy extends to a continuous operator T:L^p(Y)\to L^q(X), with \Vert T\Vert_\le C.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schur test」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.