|
In mathematical analysis, the Schur test, named after German mathematician Issai Schur, is a bound on the operator norm of an integral operator in terms of its Schwartz kernel (see Schwartz kernel theorem). Here is one version.〔Paul Richard Halmos and Viakalathur Shankar Sunder, ''Bounded integral operators on spaces'', Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 96., Springer-Verlag, Berlin, 1978. Theorem 5.2.〕 Let be two measurable spaces (such as ). Let be an integral operator with the non-negative Schwartz kernel , , : : If there exist functions and and numbers such that : for almost all and : for almost all , then extends to a continuous operator with the operator norm : Such functions , are called the Schur test functions. In the original version, is a matrix and .〔I. Schur, ''Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen'', J. reine angew. Math. 140 (1911), 1–28.〕 ==Common usage and Young's inequality== A common usage of the Schur test is to take Then we get: : This inequality is valid no matter whether the Schwartz kernel is non-negative or not. A similar statement about operator norms is known as Young's inequality:〔Theorem 0.3.1 in: C. D. Sogge, ''Fourier integral operators in classical analysis'', Cambridge University Press, 1993. ISBN 0-521-43464-5〕 if : where satisfies , for some , then the operator extends to a continuous operator , with 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Schur test」の詳細全文を読む スポンサード リンク
|